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Abstract: During the past decades several methods have been proposed to detect the stack-based buffer overflow
vulnerability, though it is still a serious threat to the computer systems. Among the suggested methods, various
fuzzers have been proposed to detect this vulnerability. However, many of them are not smart enough to have high
code-coverage and detect vulnerabilities in feasible execution paths of the program. The authors present a new smart
fuzzing method for detecting stack-based buffer overflows in binary codes. In the proposed method, concolic (concrete
+ symbolic) execution is used to calculate the path and vulnerability constraints for each execution path in the
program. The vulnerability constraints determine which parts of input data and to what length should be extended to
cause buffer overflow in an execution path. Based on the calculated constraints, the authors generate test data that
detect buffer overflows in feasible execution paths of the program. The authors have implemented the proposed
method as a plug-in for Valgrind and tested it on three groups of benchmark programs. The results demonstrate that
the calculated vulnerability constraints are accurate and the fuzzer is able to detect the vulnerabilities in these
programs. The authors have also compared the implemented fuzzer with three other fuzzers and demonstrated how
calculating the path and vulnerability constraints in the method helps to fuzz a program more efficiently.
1 Introduction

Buffer overflow is a well-known software vulnerability. During the
past decades, various methods have been suggested to detect this
vulnerability. However, buffer overflow attacks are still considered
as a serious threat to the computer systems [1]. One of the
effective methods suggested for detecting different classes of
vulnerabilities is smart fuzzing [2, 3]. Some smart fuzzers use
concolic (concrete + symbolic) execution to analyse the target
program, e.g. [4–7]. These fuzzers execute the program with
concrete input data and calculate symbolic path constraints for the
executed path. The path constraints define the characteristics of
input data that makes the current path be executed. These
constraints are used to generate new test data that traverse other
execution paths of the program. Moreover, for each executed path,
vulnerability constraints are calculated symbolically. The
vulnerability constraints determine the characteristics of input data
that activates a specific vulnerability in the executed path. By the
help of vulnerability constraints, new test data are generated that
activate vulnerabilities in that execution path. Concolic execution
has two advantages, i.e. high code-coverage and low false
positives (FP), which motivate smart fuzzers to use this method
[8]. However, as far as we know there is no smart fuzzer that uses
this method to detect buffer overflows in the binary codes.

In this paper, we present a concolic execution-based smart fuzzing
method for detecting buffer overflows in binary codes. Since the
proposed method analyses the binary code to generate new test
data, it is useful even when the source code is not available. In our
method, the path and buffer overflow constraints are calculated
symbolically for each execution path. As we calculate vulnerability
constraints for the variables that are stored in the stack memory,
our method is able to detect stack-based buffer overflows and does
not cover heap-based buffer overflows.

The generated vulnerability constraints determine to what length
the input data should be extended to overflow a stack buffer.
Unlike defining variables in the source codes, the variables and
their lengths are not clearly defined in the binary codes. However,
by considering the structure of the stack, its management and the
general method of accessing local variables in the binary codes,
we are able to estimate the length and addresses of variables in the
stack. Thus, we first present a method for estimating the lengths
and addresses of static local variables in each function. Based on
the estimated lengths and addresses, buffer overflow constraints
are calculated.

We use taint analysis to consider the instructions that are affected
by input data in calculating the constraints. Hence, the vulnerability
constraints take into account which parts of input data might be
involved in overflowing a stack buffer. This helps to fuzz a
program more intelligently. For example, if a specific field in a
configuration file is used in a strcpy() function, our method
focuses on this field and does not extend the length of all the
fields in that file. Moreover, since the loops and well-known copy
functions are more likely to be vulnerable [9], we process the
calculated constraints of loops and well-known vulnerable
functions with more priority.

Accordingly, our contributions in this paper are as follows:

† Presenting a concolic execution-based smart fuzzing method for
detecting stack-based buffer overflows in the binary codes. In this
method, the vulnerability constraints in each path are calculated by
analysing the binary code and are combined with the path
constraints in order to generate appropriate test data.
† Presenting a method for estimating addresses and lengths of static
local variables in the binary codes. The estimation is based on the
methods of accessing local variables and function arguments in the
stack in the well-known assembly languages. The results of this
estimation are used to calculate the stack overflow constraints.

The remaining of this paper is organised as following: Section 2
presents background information and related works. The proposed
smart fuzzing method is described in Section 3. Section 4
describes the implementation details and evaluates the
implemented fuzzer. The paper is concluded in Section 5.
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Fig. 1 Steps of our proposed smart fuzzing method
2 Background and related works

During the past years, various protection mechanisms have been
proposed to prevent successful exploitation of buffer overflow
vulnerabilities, such as stack cookies [10], data execution
prevention [11] and address space layout randomisation [12].
However, many of these methods impose high overhead on the
program execution and are not usable for large programs [1].
Moreover, various attack vectors are able to bypass these
protection mechanisms and successfully exploit buffer overflows
in the applications [1, 13]. For example, return oriented
programming [14], information leakage [15] and the possibility of
using user scripting or just-in-time compilation [16] allow the
attackers to bypass these protection methods. Therefore, detection
and removal of buffer overflow vulnerabilities is still required.

Fuzzing or fuzz testing is a software testing method that has been
used for detecting software vulnerabilities for many years. In this
method, the program is executed with numerous random data in
order to analyse its different behaviours. The goal is to traverse as
many execution paths as possible and analyse possible behaviours
of the program. Smart fuzzing is an effective fuzzing method that
performs an analysis on the target software to gather more
information about it [2]. Based on this information, smart fuzzers
generate new test data that traverse deeper paths in the program
and increase the chance of detecting vulnerabilities.
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Some smart fuzzers use concolic (symbolic + concrete) execution
method to achieve higher code-coverage, e.g. [6, 7, 17, 18]. In this
method, the program is first executed with some concrete input
data. Then, the executed path is analysed and its constraints are
calculated symbolically. The calculated path constraints are
negated one by one, from the last to the first, and solved by a
constraint solver, such as STP [19] or Z3 [20]. If the constraints
are solved, some input data are generated based on the solution
that traverse new paths in the program.

Some concolic execution-based smart fuzzers, i.e. EXE [4] and
KLEE [5], calculate vulnerability constraints in addition to the path
constraints to detect buffer overflow vulnerabilities. These fuzzers
first analyse the program source code to identify the arrays and their
lengths, and use this information to calculate the vulnerability
constraints. When the program is executed with concrete data, these
fuzzers calculate the path and vulnerability constraints for the
executed path. For the instructions that access a pointer, they
generate a vulnerability constraint to check whether the pointer is
able to point out of its legitimate range. After the program
execution, the vulnerability constraints are combined with the path
constraints and queried from a constraint solver. If the constraint
solver returns a solution for the set of constraints, new concrete
input data is generated to detect vulnerabilities in the executed path.

Calculating the vulnerability constraints and combining them with
the path constraints result in more intelligent fuzzing. In this method,
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Fig. 2 Sample ×86 assembly procedure [23]
the test data are generated purposefully to execute a specific path and
activate a specific vulnerability in that path. These data can be used
as a proof for existence of the vulnerability in the program. However,
as EXE and KLEE analyse the source code to compute the length of
variables and generate the vulnerability constraints, they are not
helpful when the source code is not available.

In recent years, a research trend is designing smart fuzzers that
analyse the binary codes, instead of the source codes. Some
reasons that make analysing binary codes more preferable are:
reflection of the exact behaviour of the program, optimisations and
bugs in the compilers, unavailability of the source codes and
platform-specific details [21]. A well-known recent concolic
execution-based smart fuzzer that detects buffer overflow in the
binary codes is Dowser [9]. This fuzzer first analyses the binary
code statically to locate the loops in the program. The idea is that
in complex structures like loops, it is more possible that the
programmer makes mistakes and vulnerabilities appear. Therefore,
Dowser focuses on fuzzing the paths with more complex loops.
This fuzzer uses concolic execution to generate test data that
traverse new execution paths of the program. The difference
between Dowser and other concolic execution-based fuzzers is that
it explores the paths with complex loops with more priority.
However, it does not calculate the vulnerability constraints to
detect buffer overflow in the executed paths. In fact, Dowser only
calculates the path constraints to generate test data that traverse
different execution paths of the target program.

Concolic execution-based fuzzing has also been used to detect
integer vulnerabilities [6, 7], division by zero and null pointer
dereference [17] in binary codes. These fuzzers calculate the
vulnerability constraints in addition to the path constraints to
detect the specified vulnerabilities. However, there is no concolic
execution-based smart fuzzer that detects stack-based
vulnerabilities in the binary codes by calculating the path and
vulnerability constraints.

We propose a smart fuzzing method that profits the advantages of
concolic execution and detects stack-based buffer overflows in the
binary codes. It instruments the binary program to calculate
the path and vulnerability constraints and also estimate length of
the stack buffers in the program. Based on the estimated lengths,
our fuzzer calculates the vulnerability constraints for possible
vulnerable statements in an execution path. Thus, the proposed
fuzzer does not require the source code of the program to generate
vulnerability constraints. Our fuzzer has three advantages that help
it detect the vulnerabilities more efficiently. First, it generates test
data by considering those parts of input data that affect on
possible vulnerable instructions in the program. Moreover, it
estimates the length of the stack buffer and extends the length of
input data accordingly to overflow the buffer. Thus, it does not
change the length of all parts of input data blindly to detect the
vulnerabilities in the program. Second, it considers the path and
vulnerability constraints when it generates new test data.
Therefore, the test data traverse a specific execution path and reach
the intended possible vulnerable instructions in that path. Third,
our fuzzer processes the buffer overflow constraints of the loops
and well-known vulnerable functions, e.g. strcpy(), with more
priority. Since the loops and well-known copy functions are more
probable to be vulnerable [9, 22], the proposed fuzzing method
first fuzzes these instructions in an execution path to be more
efficient.
3 New smart fuzzing method for detecting
stack-based buffer overflows

Our proposed method consists of four main steps, which are
illustrated in Fig. 1. In our method, the program is first executed
with concrete input data. During the execution, the path and
vulnerability constraints are calculated symbolically. Moreover, a
table is generated and maintained in this step that records the size
and address of static variables. In the second step, the vulnerability
constraints are processed and combined with the calculated path
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constraints. The combined constraints are queried from STP
constraint solver in the third step. If STP returns a solution, it is
used to generate new test data to detect vulnerabilities in the
executed path. In the last step, the path constraints are negated one
by one from the last to the first. After each negation, the path
constraints are queried from STP constraint solver to generate test
data that traverse new execution paths in the program. These data
are used as the concrete input data to restart the fuzzing process
from the first step. This process continues until the fuzzer does not
generate new test data at the fourth step. The details of each step
are presented in the following sections.
3.1 Executing the program with concrete data

3.1.1 Generating table of variables: To calculate the
vulnerability constraints, the size and address of static variables are
calculated and stored in a table during the program execution.
Although the variables are not explicitly defined at the binary
level, the general method of accessing local variables in the stack
frame can be used to estimate the addresses and lengths of
variables. The method of accessing the local variables and
function parameters in ×86 assembly is described by Irvine and
Das in [23]. They define stack frame as the area of the stack for
storing the function arguments, subroutines return addresses and
saved registers. The stack frame is created in the following steps:

† First, the passed arguments are pushed on the stack.
† When a subroutine is called, its return address is pushed on the
stack.
† The ebp is set equal to esp and used as the based reference for
accessing all the subroutine parameters.
† If there are local variables, esp is decremented to reserve space for
the variables on the stack.
† If any registers need to be saved, they are pushed on the stack.

The ebp register is used as the base address for accessing the stack
parameters and local variables. For example, consider the procedure
that is shown in Fig. 2. This procedure has one stack parameter. After
initialising the stack, the contents of ebp remain fixed through the
subroutine. Fig. 3 illustrates the stack frame for this procedure.
Local variables are also created on the runtime stack and are
initialised at runtime. These variables are usually located below
the base pointer (ebp). As an example, the following code declares
the local variables X and Y (see Fig. 4):

Using C++ compilers, the equivalent ×86 assembly of the above
code is generated as illustrated in Fig. 5. This code shows how the
local variables are created, assigned values and removed from the
stack. Since the stack entries default to 32 bits, the size of each
variable is rounded upward to a multiply of 4 in the stack [23].
Thus, in this code, 8 bytes are reserved for the two variables.
Fig. 6 illustrates the stack frame after creating the local variables
in the above code.

We utilise the fact that ebp is mostly used as the base address for
accessing static variables and estimate the addresses and lengths of
IET Softw., 2016, Vol. 10, Iss. 4, pp. 96–107
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Fig. 3 Stack frame for the procedure in Fig. 2 [23]

Fig. 4 Code of the local variables X and Y

Fig. 6 Stack content of the procedure of Fig. 5 [23]

Fig. 7 Sample table of variables
static variables in the program. Therefore, in the proposed method
the instructions that use ebp to access the stack are analysed for
this estimation. In other words, in the instructions like ebp− x,
x≤ 0, or x≥ 0, the values of ebp− x and x are considered as the
address and maximum length of a variable in the stack,
respectively. The maximum length determines the distance
between ebp and the address of the variable. For example, in the
sample code of Fig. 5, two variables are located in addresses
ebp-0x4 and ebp-0x8 with maximum lengths of 4 and 8,
respectively. If a variable is assigned with data longer than its
maximum length, it may overwrite ebp and cause a crash.
Moreover, if the assigned data is longer than maximum_length+4,
it may overwrite the return address in addition to ebp.

The lengths of variables can be computed according to their
distance with other local variables in the same function. For
example, in the previous sample C code, the length of Y can be
computed by subtracting the address of X from the address of Y.
To avoid implementation complexity, our method considers the
maximum length and detects buffer overflows that overwrite ebp
and return address values. In fact, it does not detect buffer
overflows that only cause overwriting the local variables.

While the program is executed with concrete input data, a table is
created for storing the estimated addresses and lengths of static local
variables. This table is shown in Fig. 7, which is filled with the result
of analysing the sample code of Fig. 5. For each instruction that
Fig. 5 ×86 assembly equivalent of the sample code [23]
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refers to the stack using ebp register, a new record is added to this
table. This record defines the address and maximum length of a
static local variable. Moreover, using the symbol table of the
binary code, the name of the currently executed function is
extracted and considered as the function that has defined the static
variable. The extracted function name is stored as variable
function in the new record. The table of variables is filled
considering two points:

† The records must be sorted in descending order based on the
address field.
† Since the stack is filled dynamically during the program
execution, different functions may use the same area in the stack.
In other words, when a function returns, it releases the assigned
area in the stack. This area may be used by the following called
functions. As the function abstraction is not presented at the binary
level and it might be separated in non-contiguous parts [24], it is
not possible to determine the end of a function and keep the table
of variables very up-to-date. In other words, it is not possible to
certainly remove the records of variables for the functions that
would no longer be used. Instead, we can remove the records that
overlap with a to-be-added new record and belong to other
functions. Such overlaps mean that a new function is using a
region of the stack that had been used by the previous functions
and is now released. Thus, before adding a new record, it is
checked if the new record overlaps with the previous records of
other functions. If such records exist in the table, they are first
removed and the new record is added then.

3.1.2 Computing the path and vulnerability constraints:
While the program is executed with concrete data, the path and
vulnerability constraints are calculated for the executed path. The
path constraints are computed with the same method as in EXE
and KLEE for the branches in the executed path [4, 5]. Since
buffer overflow might occur when the data are stored in the stack
buffer, our fuzzer instruments the store instructions to calculate the
vulnerability constraints. In fact, for each STORE(Addr)=DATA
99



Fig. 8 Creating vulnerability constraints for a sample code
instruction, it searches for Addr in the table of the variables and
selects the first record that includes Addr in its range, i.e. address
< Addr < address+maxlen. To be more efficient, the vulnerability
constraints are only generated for the instructions that store tainted
DATA values in the stack. To sum up, a buffer overflow constraint
is generated when some tainted data are stored in an address that
exists in the table of variables. In a vulnerability constraint, the
maximum length (L), the variable function (Var_func), the index
of stored tainted bytes (B) and the name of current function
(Cur_func) are specified as follows:

Input(B) is stored to a variable of length L that
is defined in function Var_func and used in
function Cur_func.

The name of the current function is specified as the function that
might be buffer overflow vulnerable. As an example, Fig. 8 shows
the vulnerability constraints that are generated for a sample code
which copies a three-character tainted string into a static variable.
The equivalent ×86 assembly of this code is presented in the
second column. For each store instruction, a new primary
vulnerability constraint is generated. The loop is repeated until the
loop counter, i, becomes greater than the length of source string.
Therefore, the store instruction is executed three times and three
primary vulnerability constraints are generated. These constraints
are presented in the constraint column of this table.
3.2 Processing the constraints

In the second step, the calculated path and vulnerability constraints
are combined to generate new queries that are consistent with the
syntax of the constraint solver queries. At this step, the
vulnerability constraints are first pre-processed to detect the loops
and well-known vulnerable functions in the executed path. The
vulnerability constraints of such statements usually appear by a list
Table 1 Processing the vulnerability constraints

Constraints before pre-processing

Input(x) is stored to a variable of length 12 that is defined in function test
and used in function test

Inpu
test

Input(x + 1) is stored to a variable of length 12 that is defined in function
test and used in function test
Input(x + 2) is stored to a variable of length 12 that is defined in function
test and used in function test
Input(x + 3)is stored to a variable of length 12 that is defined in function
test and used in function test
Input(x + 10) is stored to a variable of length 12 that is defined in function
test and used in function test

Inpu
func

Input(x + 11) is stored to a variable of length 12 that is defined in function
test and used in function test
Input(x + 12) is stored to a variable of length 8 that is defined in function
test and used in function test2

Inpu
and
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of constraints with incrementing index of tainted input bytes and
the same variable and Cur_func name, like the example in Fig. 8.
Therefore, sequential constraints that are generated for the same
destination and in the same vulnerable function are merged into a
single buffer overflow constraint for the range of copied input
bytes in that function.

For example, Table 1 illustrates some vulnerability constraints
before and after the pre-processing step. In this table, the first four
constraints are generated for copying consequent input bytes, from
x to x + 3, to the same variable in the same Cur_func. Thus, they
are merged into a single constraint for storing bytes [x, x + 3] into
the same variable in the same Cur_func. The fuzzer processes
these constraints before the other vulnerability constraints that are
generated for the executed path.

The vulnerability constraints are combined with the path
constraints to generate queries for the constraint solver. The main
concern in stack-based buffer overflow vulnerability is the length
of stored data. Thus, the queries should be generated in a way to
ask for input data that is longer than the estimated length of the
intended destination buffer. In this way, the generated input data
may cause buffer overflows in intended statements of a specific
execution path. The combination of path and vulnerability
constraints is performed by padding the path constraints in order
to extend the length of the generated input data.

For example, when the input bytes (x, x + 5) are stored in a stack
buffer with the length of maxlen, we make a padding in the path
constraints for the input bytes in the range (x, x + 5) to extend the
length of stored data. In fact, we make the length of the bytes in
(x, x + 5) more than maxlen +4 to overwrite the return address. To
do so, the path constraints for bytes (0, x + 4) remain unchanged
and the rest of the constraints are shifted from byte i to the byte i+
maxlen + 4. Fig. 9 illustrates such padding process. Padding the
specific bytes that are involved in possible vulnerable statements
helps to have more guided fuzzing. Instead of extending the length
of all the strings and fields in the input data blindly, only the
sections that are used in vulnerable statements becomes longer.
Constraints after pre-processing

t([x, x + 3]) is stored to a variable of length 12 that is defined in function
and used in function test

t([x + 10, x + 11]) is stored to a variable of length 12 that is defined in
tion test and used in function test

t(x + 12) is stored to a variable of length 8 that is defined in function test
used in function test2
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Fig. 9 Padding of the constraints

a Illustrates the constraints before padding
b Illustrates the constraints after padding
This makes the fuzzing process more efficient. Moreover, the new
input satisfies the path constraints hence it will reach the intended
possible vulnerable statements.
3.3 Testing for buffer overflow

In this step, the combined constraints are queried from STP
constraint solver. If STP returns a solution, it is used to generate
new test data that cause buffer overflow in the executed path. The
program is then executed with the generated input data. If it causes
a crash or any pre-defined unacceptable behaviour, a vulnerability
is reported. Moreover, the solution would be used as an evidence
for existence of the vulnerability.
3.4 Extending the execution

After testing for existence of buffer overflow in the current executed
path, it is time to extend the execution of the program into new paths.
In this step, we use the same method as in [6, 7, 18] to generate new
test data that traverse other execution paths. To do so, the path
constraints are negated one by one, from the last to the first. After
each negation the resulted path constraints are queried from the
constraint solver. The generated solutions are used as the concrete
test data to restart the fuzzing procedure from the first step. If the
constraint solver cannot find a solution for any of the negated
constraints, there would be no new execution path to explore.
Therefore, the fuzzing procedure is ended.
4 Evaluation

We have implemented the proposed method as a plug-in for
Valgrind. Valgrind is a framework for instrumenting the binary
codes and implementing dynamic analysis solutions [25]. We also
used another plug-in, called Fuzzgrind, that performs concolic
execution and calculates the path constraints in the binary
programs [18]. In fact, we have implemented our method by
extending Fuzzgrind so that it calculates buffer overflow
constraints in addition to the path constraints for each execution
path. Fuzzgrind has been implemented for testing 32-bit binary
programs on Linux, thus our current implementation works for
32-bit Linux applications. However, the proposed fuzzing method
is also usable for binary programs on other types of operating
systems. It is worth mentioning that as the taint analysis solution
in Fuzzgrind is limited to the inputs from files and the keyboard,
our implemented fuzzer is able to detect vulnerabilities that are
exploited by the use of input data from files or the keyboard. Our
implemented fuzzer is tested in a Backtrack VMware with 1 GB
RAM and 1.8 GHz CPU.

Currently, Fuzzgrind does not support some data types, such as
V128. These data types are usually used in real-world applications.
For example, many optimising compilers transform particular parts
IET Softw., 2016, Vol. 10, Iss. 4, pp. 96–107
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of sequential instructions into equivalent parallel ones to speed up
the program execution. This transformation leads to using V128
data type in the program. Without such optimisations, executing
the program would be very slow. Therefore, the implemented
fuzzer is not currently testable on real-world applications. In order
to demonstrate the accuracy and efficiency of the proposed
method, we have used a variety of test programs and designed
different test scenarios that show the abilities of our fuzzer clearly.
We postpone extending Fuzzgrind to handle other data types, and
detecting vulnerabilities in real-world software to our future works.
All the test programs that are used in this evaluation are compiled
with ‘gcc-O2’ and with no debugging options enabled.

4.1 Test one: detecting vulnerabilities in different
statements

In the first test, we evaluated the ability of our fuzzer in identifying
possible vulnerable statements and generating vulnerability
constraints for those statements. We show that our fuzzer is able to
recognise different vulnerable statements and generate test data
that cause buffer overflow in those statements. In this test, we have
used Juliet_Test_Suite_v1.2_for_C_Cpp test suit, which is
provided by NIST in SARD project [26] and contains a set of
vulnerable programs written in C and C++ [27]. The SARD
project is aiming at collecting different test suits to help the end
users to evaluate tools and tool developers to test their methods.
We have used the test suits that are provided in this project since
we found NIST SARD offering the most comprehensive and
up-to-date test programs.

The test programs in Juliet_Test_Suite_v1.2_for_C_Cpp are
classified based on the classification of faults and vulnerabilities in
CWE database [28]. We have tested our fuzzer on the programs of
class CWE121_Stack_Based_Buffer_Overflow. The test programs
in this benchmark contain one or more good functions and a bad
function. Therefore, all these test programs contain one
vulnerability. Good functions avoid a vulnerability by checking the
(input) data value or using a legitimate static data value in critical
operations. The bad function operates on input data directly with no
previous checks. It might copy the input string in a loop or using a
vulnerable C function, e.g. memcpy(), strcpy(), strncpy(). All the test
programs in this benchmark define a static fixed string and copy it
into a destination. Since our method creates vulnerability constraints
for the instructions that store tainted data, we changed the source
string in these programs so that it is read from a file.

Table 2 presents the results of our tests on a group of these test
programs. The columns in this table represent, from left- to
right-hand side, the name of the test program, a description about
the vulnerability and the structure of the test program, the number
of generated buffer overflow constraints by our fuzzer, the number
of generated path constraints by our fuzzer, the number of
generated test-cases, the number of reported crashes, the number
of true positives (TP), FP, true negatives (TN) and false negatives
(FN) in the test result and the duration of performing the test.
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Table 2 Results of the first test on a group of programs selected from [27]

Program name Description # bof const # path const # test-cases # crash # TP # FP # TN # FN Time, s

loop_01 1 loop 1 0 1 1 1 0 1 0 1.63
memcpy_01 1 memcpy function 1 0 1 1 1 0 1 0 1.6
cpy_01 1 strcpy function 1 6 7 1 1 0 1 0 1.9
memove_01 1 memmove function 1 0 1 1 1 0 1 0 1.64
ncat_01 1 strncat function 1 6 7 1 1 0 1 0 1.86
snprintf_01 1 snprintf function 1 6 7 1 1 0 1 0 1.73
cat_01 1 strcat function 1 6 7 1 1 0 1 0 1.7

Names of the test programs are shorten because of lack of space. The complete name of each test program is the result of appending its name in the table
to ‘CWE121_Stack_Based_Buffer_Overflow__CWE805_char_declare’.
As shown in Table 2, each test program contains one vulnerable
statement in its bad function that stores tainted data into the stack.
Our fuzzer has generated one vulnerability constraint for the
vulnerable statement in the bad function of each program. The
different number of path constraints in this table is because of
the different behaviour of the copy instructions. When the copy
operation is performed by a strncpy, strncat or snprintf function, the
binary code checks if each copied byte is equal to zero. If the copied
character is Null, the program stops the copy operation. As an
example, for a tainted string that is six-character long, it checks
whether each of the six characters is Null. Therefore, our fuzzer
generates six path constraints. However, when the copy operation is
performed in a loop, memcpy or memove function, the executable
does not perform any check on the value of the copied bytes. Thus,
the fuzzer does not generate any path constraints for them.

The test-cases are generated by solving the path and vulnerability
constraints. When all the path and vulnerability constraints are
solvable, the number of generated test-cases is equal to sum of the
number of path and vulnerability constraints. The number of
generated test-cases in this table shows that STP could resolve all the
path and vulnerability constraints and our fuzzer has generated one
test-case based on each solution. Executing the program with the
test-case that was generated based on the vulnerability constraint has
led to a crash, and thus the fuzzer has reported a TP alarm. As our
fuzzer has not generated any alarm for the copy operations in the
good function of the test programs, one TN and zero False Positive
(FP) alarm is recorded for each program in this table. Moreover, as
the vulnerability in each program was detected by our fuzzer, one TP
and zero FN alarm is recorded in each record of this table.
4.2 Test two: detecting vulnerabilities in more
complicated paths

In the second test, we designed test programs that contain
vulnerabilities in more complicated execution paths. The goal of
this test is to better evaluate the ability of our fuzzer in combining
path and vulnerability constraints and detecting vulnerabilities in
more complicated execution paths. In fact, we changed the bad
function in one of the test programs in the class
CWE121_Stack_Based_Buffer_Overflow of
Juliet_Test_Suite_v1.2_for_C_Cpp and made it more complicated.
The resulted test programs contain one good function and one bad
function. The details of the bad function in these programs are
presented in Fig. 10. Moreover, the results of this test are
presented in Table 3.

As an example, to detect the buffer overflow in test_1, our fuzzer
calculated the path constraints in lines 3 and 4 of the program. Then,
it generated input data that comply with those path constraints. By
executing the program with that input data, our fuzzer reached the
strcpy function and generated a vulnerability constraint for it. The
vulnerability constraint was combined with the previous path
constraints to generate new test data that cause overflow in line 5
of this program.

Moreover, the bad function in test_3 securely copies the first 10
bytes of the tainted source into a static variable. Then, it copies
the 21th to the last byte of input data into that variable and causes
a stack-based buffer overflow. The implemented fuzzer detected
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the vulnerability by making a padding in the range (21, strlen
(source)) of the path constraints and generating appropriate test
data that comply with the constraints in line 9. There are two
secure copy operations in this program: one in the good function
and another in the first loop of the bad function. The fuzzer did
not generate any alarms for them, thus two TN alarms and zero FP
alarm are recorded for this test in Table 3.

The bad function in test_4 copies a tainted array into the stack
using a recursive function. Detecting such vulnerability is
challenging and time-consuming for static analysers, since they
need to generate the program dependence graph for the program
and analyse the relation between the called functions. It was,
however, quickly detected by our fuzzer.

4.3 Test three: detecting vulnerabilities in simplified
applications

Since the test programs in the previous tests contained only one
vulnerability, in the third test we have used simplified versions of
real-world applications that are more complicated and contain
more vulnerabilities. The goal of this test is to verify if the fuzzer
can handle large amount of constraints and detect different
vulnerabilities in a program. The test programs in this test are
chosen from SARD.testsuite-88.2014-12-21-10-39-47 test suit of
SARD project [29]. This benchmark consists of simplified version
of programs, such as NSlookup and Sendmail, which contain a
number of buffer overflow vulnerabilities. Table 4 presents the
results of testing our fuzzer on these programs. It is worth
mentioning that the test program in the first row contains
execution paths that depend on values of the environment
variables. Since our implemented taint analysis method only
considers the data read from file and keyboard as tainted, our
fuzzer was not able to calculate the constraints of these paths.
Thus, to evaluate the accuracy of the implemented fuzzer, we have
considered the number of vulnerabilities that exist in the paths that
do not depend on environment variables. Therefore, the
description column for this program presents the number of
vulnerabilities that exist in the feasible paths for the implemented
fuzzer. These paths depend on the values of data that are read
from a file or keyboard.

The FN column shows that there are undetected vulnerabilities for
the test program in the second row. These vulnerabilities occur when
a fixed untainted string is copied into the stack. Since the copied data
are defined statically by the program and cannot help in exploiting
the program by malicious users, our fuzzer did not calculate the
vulnerability constraints for these operations. There are also some
secure operations that store data into the stack in each program,
which are shown in the TN column. Table 4 shows that our fuzzer
did not falsely report those secure copy operations as vulnerabilities.

4.4 Test four: comparison with other fuzzers

In the fourth test, we compared our fuzzer with three other fuzzers to
demonstrate how calculating the path and vulnerability constraints
makes our fuzzer more efficient than the other fuzzers. We have
compared our fuzzer with three well-known fuzzers of different
intelligence levels, i.e. a basic fuzzer, a file format fuzzer and a
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Fig. 10 Details of bad functions in the designed programs of test two

Table 3 Results of the second test on a group of designed test programs

Program name Description # bof
const

# path
const

#
test-cases

#
crash

#
TP

#
FP

#
TN

#
FN

Time,
s

test_1 1 strcpy based on the tainted value in
nested if statements (if then (if then

strcpy))

1 8 9 1 1 0 1 0 1.85

test_2 nested if statements with one secure
strncpy and an insecure strcpy

(if then strncpy_secure (if then
strcpy_insecure))

2 14 16 1 1 0 2 0 3.51

test_3 described in Fig. 10 2 9 11 1 1 0 2 0 11.10
test_4 string copy in recursive functions 1 0 1 1 1 0 1 0 1.79

Table 4 Results of the third test on simplified versions of some vulnerable real-world applications

Program name Description # bof const # path const # test-cases # crash # TP # FP # TN # FN Time, s

realpath-2.4.2 2 strcat, 1 strcpy 3 46 49 3 3 0 1 safe strcpy 0 43.27
mapped-path 2 strcpy, 2 strcat 2 33 20 2 2 0 3 safe strcpy 1 strcpy, 1 strcat 53.47
ns-lookup 2 sprintf 2 84 80 2 2 0 2 safe strcpy 0 114.71
Iquery 1 memcpy 1 14 11 1 1 0 0 0 51
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Fig. 11 Configuration file of test programs that is filled with sample data
concolic execution-based fuzzer that only calculates the path
constraints. Unfortunately most of the fuzzers that are developed
in academia are not available. From the available fuzzers, we
chose Microsoft Security Development Lifecycle (SDL) MiniFuzz
as a basic fuzzer [30], Peach as a file format fuzzer [31] and
Fuzzgrind+Memcheck as a concolic execution-based fuzzer.
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Microsoft SDLMiniFuzz is a basic fuzzer that receives an input file
as a seed and generates multiple random variations of the file content.
This tool is proposed byMicrosoft to be used in Microsoft SDL by the
development teams. MiniFuzz randomly changes the characters of
input data to make the program crash. It does not analyse the target
program, nor does it extend the length of input data.
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Fig. 12 C code shows the different part in the second test program
Peach is a well-known file format fuzzer that allows human
analysers to define the format of the input file for it. In this
definition, the name, the data type and length of the data in each
field can be defined. It is also possible to determine which fields
should be fuzzed to detect the vulnerabilities. Based on the
defined format, Peach changes the content of input file to generate
new test data. Peach also generates new test data by the use of
mutation fuzzing method. In the mutation method, new test data
are generated by slight modifications of the good data. The
modifications may be performed randomly or based on some
heuristics. As an example of heuristic mutations, the fuzzer
changes the length of some data into larger values to detect buffer
overflow vulnerabilities.

Fuzzgrind+Memcheck is a fuzzer that we created by combining
the tools Fuzzgrind and Memcheck. Memecheck is a plug-in for
Valgrind that detects memory errors and vulnerabilities in the
binary codes [32]. Memcheck detects the vulnerabilities that are
activated in the current execution path with current test data. In
other words, it does not actively generate test data that traverse
different execution paths and activate specific vulnerabilities in the
executed path. In Fuzzgrind+memcheck, Fuzzgrind calculates the
path constraints and generates test data that traverse new execution
paths. The program is executed with new test data under the
supervision of Memcheck. If a vulnerability becomes active in the
current execution, Memcheck detects it. This fuzzer does not
calculate any vulnerability constraints. Thus, it does not know
which parts of input data affect on possible vulnerable statements
or what is the minimum required length of input data that causes
overflow in the program. This fuzzer does not extend, even
randomly, the length of input data. The goal of comparing our
fuzzer with this fuzzer is to show how calculation of vulnerability
constraints, in addition to the path constraints, helps to fuzz the
target program more efficiently.

We designed two test programs for this test. These programs read
some data from a configuration file and store them in the stack
memory. The configuration file contains four fields: name, ip,
address and national code (Ncode). The following shows the
configuration file of these test programs that is filled with sample
data. (see Fig. 11)

In line 49 of this code, the program reads the addr value, by the
use of fread_string function, but does not limit the length of the
read data. Thus, there is a buffer overflow vulnerability in this
program. To detect this vulnerability, the fuzzers should consider
the format of the configuration file and extend the length of the
addr value. In other words, the generated test data should comply
with the path constraints in lines 36, 39, 43 and 47 to reach the
vulnerable statement in line 49.

Table 5 presents the results of testing the first test program with
these fuzzers. In this test an input file that is not well-formatted
and contains the string ‘aaaaaaaaaaaaaaaaaaaaaaaa’ is used as
the initial input file. Thus, the fuzzers should first recognise the
acceptable format of the configuration file and then extend the
length of each field to detect the buffer overflow. We performed
this test by Peach with two different configurations. First, we
defined the format of the input file and used the not-well-formatted
file as the initial input file. The result of this test is presented in
Table 5 Results of testing the first designed test program with a not
well-formatted initial input file

Fuzzer name Detected? # generated
test-cases

Code-coverage,
%

Time,
s

Microsoft SDL
MiniFuzz

no >60,000 28 >3600

Peach (knowing
the format)

yes 22 100 11.31

Peach (not
knowing the
format)

no >15,550 28 >3600

Fuzzgrind
+Memcheck

no >3567 100 >3600

Our fuzzer yes 152 100 138
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the second row of Table 5. Then, we used the not-well-formatted
input file but did not define the format of the input file. The result
of this test is presented in the third row of Table 5.

In this test, our fuzzer and Fuzzgrind+Memcheck calculated the
path constraints and generated test data that were in the acceptable
format. As shown in this table, these fuzzers achieved 100%
code-coverage. The value of code-coverage is calculated by
dividing the maximum number of lines of code that were executed
by the fuzzer to the total number of lines of code in the program.
Since Fuzzgrind+Memcheck did not extend the length of the addr
value, it could not detect the buffer overflow vulnerability. Thus,
only our proposed fuzzer could detect the vulnerability. The
proposed fuzzer determined the length of the destination buffer,
extended the length of the addr field into more than 128 bytes and
detected the vulnerability in acceptable time.

When the format of the input file was defined for Peach, it
achieved 100% code-coverage and detected the vulnerability in the
test program. Thus, when Peach has enough knowledge about the
format of the input file, the use of inappropriate initial input files
does not have much effect on its efficiency. However, when Peach
did not know the format of the input file, it could not detect the
vulnerability in an hour. It only got 28% code-coverage and did
not reach the vulnerable statement. MiniFuzz did not know the
correct format of input file or the logic of the program either.
Thus, it got only 28% code-coverage and could not detect the
vulnerability. This test demonstrated that our fuzzer is able to
generate appropriate test data even without knowing the required
format of the input data.

The second test program is similar to the first one, except that it
checks the value of the ip filed before reading addr. If the value of
ip begins with ‘192’, it reads the addr value. The following C
code shows the different part in the second test program: (see Fig. 12)

To activate the vulnerability in this program, the generated test
data should be consistent with the constraint on the value of ip
address. Thus, the fuzzers should generate test data with ip values
that start with ‘192’. We tested the fuzzers with this program and
by using a well-formatted input file. In this file, the value of the ip
field is ‘127.0.0.1’. Moreover, we defined the format of input file
to Peach in this test. Table 6 presents the results of this test. In this
test, our proposed fuzzer and Fuzzgrind+Memcheck calculated the
path constraints and generated test data that complied with the
constraints on the ip value. The generated test data caused
execution of line 50 in the C code of this program. Although both
of these fuzzers achieved 100% code-coverage, only our fuzzer
calculated the vulnerability constraint for overflowing the addr
Table 6 Results of testing the second designed test program with a
well-formatted initial input file

Fuzzer name Detected? # generated
test-cases

Code-coverage,
%

Time,
s

Microsoft SDL
MiniFuzz

no >60,000 28 >3600

Peach (knowing
the format)

no >15,550 91 >3600

Fuzzgrind
+Memcheck

no >2182 100 >3600

Our fuzzer yes 562 100 673.68
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buffer and generated test data with appropriate ip and addr values.
This shows that calculating the vulnerability constraints in addition
to the path constraints helps to detect the vulnerabilities in
complicated paths efficiently. Since Peach and MiniFuzz did not
analyse the binary code of the target program, they were not aware
of the path constraints in it and did not generate test data that meet
these constraints. In this test, MiniFuzz and Peach achieved 28 and
91% code-coverage in an hour, respectively. Although Peach knew
the format of input file, it was not aware of the path constraint in
line 46 of the program. Thus, it could not generate test data that
comply with that constraints and could not execute the lines 47 to
50 of this program. Therefore, only the proposed fuzzer could
reach the vulnerable statement and detect the vulnerability in it.

These tests demonstrate that our fuzzing method detects
vulnerabilities efficiently even when the human analyser does not
have enough information about the format of the input data or the
logic of the target program. Our fuzzer analyses the binary code
and determines the appropriate format of the input data. Usually
software programs consist of different execution paths. Execution
of each path depends on a variety of conditions that the human
analysers are not usually aware of them. Our fuzzer calculates the
conditions of each execution path and generates test data
accordingly. The generated test data traverse intended execution
paths and detect vulnerabilities in those paths.

Although due to some technical limitations we did not test the
implemented fuzzer on real-world applications, we performed
different tests on a variety of benchmark programs and showed
that the proposed fuzzing method is able to accurately detect
vulnerabilities in different vulnerable programs. Moreover, by
comparing the fuzzer with three other fuzzers, we demonstrated
how calculation of the path and vulnerability constraints in our
method reduces the number of generated test-cases to detect a
vulnerability. This makes the fuzzing process more efficient by
decreasing the fuzzing time and efforts. From this evaluation, it
can be concluded that as the implemented fuzzer detected
vulnerabilities efficiently in these test programs, the proposed
smart fuzzing method can also be applied to detect stack-based
buffer overflows in real-world applications more efficiently.
5 Conclusions

This paper presented a smart fuzzing method for detecting
stack-based buffer overflows in the binary codes. The designed
fuzzer uses concolic execution method to calculate the path and
buffer overflow constraints in the program. For each executed
path, it combines the calculated path and vulnerability constraints
to generate test data that cause buffer overflow in that path. In
order to calculate the vulnerability constraints, a method is
suggested for estimating the length of variables in the stack. Based
on the estimated lengths, vulnerability constraints are generated for
the instructions that store tainted data into the stack. Our method
expands the executed paths, by negating the calculated path
constraints and solving the new set of constraints to generate test
data that traverse other execution paths.

The proposed fuzzing method has several advantages that make it
more efficient in comparison with the previous methods. First, by
combining the path and vulnerability constraints, it generates data
for detecting vulnerabilities in a specific execution path that
comply with the constraints of that path. Thus, the test data
traverse the specific path and activate the vulnerabilities in that
path. Next, our method considers the index of the input bytes that
are used in possible vulnerable statements. It also estimates the
size of the stack buffers in the program and uses this information
for generating new test data. Therefore, it does not change all parts
of input data blindly to detect the vulnerabilities. Moreover, our
method pre-processes the buffer overflow constraints in order to
fuzz the loops and well-known vulnerable functions, e.g. strcpy(),
with more priority. These advantages make our fuzzer more
efficient by reducing the fuzzing time and efforts. The evaluations
demonstrated that the specified vulnerability constraints in our
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method are accurate and our fuzzer detects the vulnerabilities in
the test programs efficiently.

Another advantage of the proposed smart fuzzing method is that it
can be extended to get more accurate by adding new vulnerability
constraint calculation routines into it. In other words, extending
the proposed fuzzer does not require essential changes in the
algorithm and can be performed only by adding new vulnerability
constraints. For example, our implemented fuzzer generates
vulnerability constraints for the store instructions. It can also
generate the constraints for load instructions in order to detect
buffer over-read and buffer under-read vulnerabilities.

In the future, we are going to extend the fuzzer to detect other
types of buffer overflow in the binary codes. We only estimated
the length of variables that are stored in the stack. We will extend
it to estimate the length of variables in heap to detect heap-based
buffer overflows.

A challenge in applying the concolic execution method in fuzzing
the programs is path explosion. In fact, the number of feasible
execution paths increases exponentially in the large programs.
Various optimisation techniques have been proposed against the
path explosion [8], which are not currently implemented in our
fuzzer. In the future we are going to improve the efficiency of our
fuzzer by applying appropriate optimisation techniques to tackle
the path explosion challenge. Moreover, we are going to extend
our fuzzer so that it supports other data types, such as V128. With
these enhancements, we would make our fuzzer applicable to
real-world applications. We will also extend our implemented taint
analysis method so that it considers the data from other sources,
such as network sockets or environment variables, as tainted.
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